Matrix Inverse Trigonometric and Inverse Hyperbolic Functions: Theory and Algorithms

نویسندگان

  • Mary Aprahamian
  • Nicholas J. Higham
چکیده

Theoretical and computational aspects of matrix inverse trigonometric and inverse hyperbolic functions are studied. Conditions for existence are given, all possible values are characterized, and the principal values acos, asin, acosh, and asinh are defined and shown to be unique primary matrix functions. Various functional identities are derived, some of which are new even in the scalar case, with care taken to specify precisely the choices of signs and branches. New results include a “round trip” formula that relates acos(cosA) to A and similar formulas for the other inverse functions. Key tools used in the derivations are the matrix unwinding function and the matrix sign function. A new inverse scaling and squaring type algorithm employing a Schur decomposition and variable-degree Padé approximation is derived for computing acos, and it is shown how it can also be used to compute asin, acosh, and asinh. In numerical experiments the algorithm is found to behave in a forward stable fashion and to be superior to computing these functions via logarithmic formulas.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fekete-Szegö Problem of Functions Associated with Hyperbolic Domains

In the field of Geometric Function Theory, one can not deny the importance of analytic and univalent functions. The characteristics of these functions including their taylor series expansion, their coefficients in these representations as well as their associated functional inequalities have always attracted the researchers. In particular, Fekete-Szegö inequality is one of such vastly studied a...

متن کامل

A meshless technique for nonlinear Volterra-Fredholm integral equations via hybrid of radial basis functions

In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...

متن کامل

Several Integrability Formulas of Special Functions

In this article, we give several integrability formulas of special and composite functions including trigonometric function, inverse trigonometric function, hyperbolic function and logarithmic function. The notation and terminology used here are introduced in the following papers:

متن کامل

The use of inverse quadratic radial basis functions for the solution of an inverse heat problem

‎In this paper‎, ‎a numerical procedure for an inverse problem of‎ ‎simultaneously determining an unknown coefficient in a semilinear ‎parabolic equation subject to the specification of the solution at‎ ‎an internal point along with the usual initial boundary conditions ‎is considered‎. ‎The method consists of expanding the required‎ ‎approximate solution as the elements of the inverse quadrati...

متن کامل

The Convolution Ring of Arithmetic Functions and Symmetric Polynomials

Inspired by Rearick (1968), we introduce two new operators, LOG and EXP. The LOG operates on generalized Fibonacci polynomials giving generalized Lucas polynomials. The EXP is the inverse of LOG. In particular, LOG takes a convolution product of generalized Fibonacci polynomials to a sum of generalized Lucas polynomials and EXP takes the sum to the convolution product. We use this structure to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2016